在很多便携式无线设计中,发射器可能离音频电路仅仅数英寸。这样,如果设计人员未考虑天线的位置,设计就可能产生很多问题。常规的附加物,如增加屏蔽,对现今极其紧凑的电子产品来说可能不合适。在微型便携式无线产品中使射频干扰(RFI)最小化,一个重要考虑因素就是天线与设计的音频电路的相对位置。
在扫描频率为100 kHz~6 GHz范围测量,实验结果表明干扰集中在1.4~2.8GHz范围和3.8~5GHz范围(图7)。频率扫描期间天线的位置如图7右下方所示。注意,初始扫描时天线直接在部件封装上方。在上述干扰集中区采用单个载波频率进行下列测试,测试结果如下:
1.高反馈电阻值比低反馈电阻值更能降低干扰。将天线直接布放在高值电阻上方产生的干扰比布放在低值电阻上方产生的干扰水平低。频率越高,干扰水平越低。这一观察结果与Ghadamabadi以前报道的结果一致。对这两组电阻值,将天线布放在IC上方产生的干扰最小。
2.加RFI电容可能弊大于利。将天线直接布放在高值电阻上方产生的干扰比布放在低值电阻上方产生的干扰水平低。可以看出: 频率越高,干扰水平越低。这一观察结果与Ghadamabadi以前报道的结果一致。不过,将天线直接布放在IC封装上方在两个放大器的输出端产生的干扰要高得多,与电阻值无关。图 6给出了远场天线和近场天线的信号路径。在远场天线条件下,电缆的串联电阻、PCB走线和外部元件形成一低通滤波器和RFI电容。此时,增加RFI电容的这一经验法则对于RF信号进入放大器前消除它是有效的。对于近场天线,低通滤波器阻抗非常小或者没有, RFI电容实际上在放大器输出端得到更高的阻抗。
3. MOSFET输入放大器比双极型晶体管更不易受RFI影响。
将天线直接布放在模块或电阻上方表明MOSFET输入比双极型输入放大器的干扰小得多。这一结论与Fiori以前报道的结果一致。
总之,用增加RFI电容来控制干扰的老经验法则实际上会导致与天线布放位置有关的干扰的增加。系统设计人员在使用RFI电容作为可能的RFI解决方案前,就应该考虑到无线产品设计中天线的位置。高值反馈电阻和MOSFET输入放大器的经验设计法则,对改善近场条件下电路的抗射频干扰能力仍然有效。
为您推荐
在数字时代,新的信息技术日新月异,就INTERNET接入技术而言,ISDN已经不是什么新玩意了,新兴的卫星上网技术--星网通才叫酷呢,下载速率快,图片刷新神速。但是很多人在安装星网通天线时
正焦天线寻找卫星,通常只要知道该卫星当地的接收仰角,把仰角器置於天线正中央加以调整仰度,再搭配指南针与卫星信号测试仪器很容易就可以找到你要的卫星.当你定位完成时,此时盘面中央、LNB及3万6千公里的卫星是成一直线的.功能聚焦信号增益防微波干扰货运装柜成本
国内部分地区卫视收视天线尺寸表湖北地区:76.5度:C1.35M(极限接收),KU0.65;78.5度:C1.5MKU0.980度:C1.8M(极限接收,未加极化片);83度:C1.35M(稳定接收)88度:C0.9M;加馈源M0.75M90度:C1.5M100.5度:C1.35M(稳定接收),KU0.65;105.5度:C0.9-1M,KU0.75;110.5度:C1.5MKU0.65;113度:C1.5MKU0.6可下帕拉帕,116度:124度:128度:C1.2MKU0.9M134度:
802.16标准是为在各种传播环境(包括视距、近视距和非视距)中获得最优性能而设计的。即使在链路状况最差的情况下,也能提供可靠的服务。OFDM波形在2km~40km的通信距离上支持高频谱效率,在一个射频内速率可高达75Mbit/s,可以采用先进的网络拓扑(网状网)和天线技术(波束成形、STC、天线分集)进一步加强覆盖。这些先进技术也可用来提高频谱效率、容量、复用以及每射频信道的平均与峰值吞吐量。此外,不是所有的OFDM都是相同的。为BWA设计的OFDM具有支持较长距离传输和处理多径或反射的能力。TCP、IP协议的特点之一是对信道的传输质量有较高的要求。无线宽带接入技术面对日益发展的IP数据业务