谷歌推出全新AI服务工具Cloud AutoML 让AI大众化飞入寻常百姓家

2018-01-19 10:07:05来源: 热度:
1月18日,当地时间周三,谷歌推出了一套全新人工智能服务工具AutoMLCloud AutoML,让机器学习更容易。
 
 
Cloud AutoML,顾名思义就是云上的AutoML。谷歌去年5月发布AutoML,当时谷歌CEO劈柴哥说,现在设计神经网络非常耗时,对专业能力要求又高,只有一小撮科学家和工程师能做。为此,谷歌创造了一种新方法:AutoML,让神经网络去设计神经网络。
 
去年11月,谷歌对AutoML进行升级。之前的AutoML虽能设计出与人类设计的神经网络同等水平的小型神经网络,但始终被限制在CIFAR-10和Penn Treebank等小型数据集上。升级之后,AutoML也能应对ImageNet这种规模的数据集了。
 
总之,这个方法就是让AI设计AI。现在谷歌又把这个技能放到云上了。
 
现在唯一的问题是,谷歌没有公布Cloud AutoML的服务价格,而且也暂时没有对外开放。想要试用这个服务,需要向谷歌发出申请。
 
该服务工具能帮助缺乏机器学习相关开发经验的公司或个人,快速简便地建立基于机器学习的应用。目前,该服务已经被包括迪斯尼和Urban Outfitters在内的公司使用。
 
谷歌日益增长的云业务正试图将人工智能大众化。在此之前,云计算公司试图利用“随时可用”的人工智能服务来吸引公司更多地使用他们的服务。
 
谷歌已经在其业务的几个部分使用了人工智能,现在该公司正寻求使这项技术更容易被许多人采用,这可能会提高谷歌的整体云计算能力。
 
谷歌云AI项目首席科学家李飞飞表示:“我们的目标是降低开发者、研究者和企业群体使用人工智能相关工具和框架的门槛。”
 
谷歌云AI项目主管李佳表示:“目前,世界上只有少数几家企业拥有适应人工智能和机器学习高速发展所需的人才和资金预算,我们相信,Cloud AutoML将使AI专家的工作效率更高,有助于在AI方面开拓新领域,并帮助技术娴熟的工程师构建他们以前梦寐以求的强大的AI系统。”
 
 
为了Cloud AutoML的发布,谷歌云人工智能和机器学习首席科学家李飞飞,谷歌云人工智能研发负责人李佳,联合发布了一篇博客,详细介绍了Cloud AutoML。
 
“我们一年多之前加入Google Cloud,开启了AI民主化的使命。我们的目标,是降低进入门槛,将AI提供给最广大的开发者、研究人员和企业群体。
 
向着这个目标,我们的Google Cloud AI团队进展顺利。2017年,我们推出了Google Cloud Machine Learning Engine(机器学习引擎),帮助有机器学习专业知识的开发者轻松构建适用于任何数据类型的机器学习模型。我们展示了能怎样在预训练模型之上构建现代机器学习服务,也就是视觉、语音、自然语言处理(NLP)、翻译、Dialogflow等API,为商业应用带来无与伦比的规模和速度。我们的数据科学家和ML研究人员社区Kaggle已经发展到百万人规模。现在,使用Google Cloud AI服务的企业数量超过10000,Box、劳斯莱斯船业、玩具公司丘比、和网上超市奥卡多都在用。
 
但我们能做的远不止于此。目前,世界上只有少数企业能获取足够的人才和预算来享受ML和AI发展带来的益处,能够创建先进机器学习模型的人才非常有限。就算你们公司有ML或者AI工程师,要自己构建定制化的ML模型仍然要经理一个耗时、复杂的过程。虽然Google通过API提供了能完成特定任务的预训练机器学习模型,但要把AI带给每个人,还有很长的路要走。
 
为了缩小差距,让每家企业都能用上AI,我们推出了Cloud AutoML。
 
Cloud AutoML通过使用learning2learn、迁移学习等先进技术,帮助ML专业技能有限的企业构建自己的高品质定制化模型。我们相信,Cloud AutoML将帮AI专家提升工作效率,开拓AI新领域,并帮助能力不足的工程师构建他们以前梦寐以求的强大AI系统。
 
我们发布的第一个Cloud AutoML功能是Cloud AutoML Vision,这个服务能让定制化图像识别ML模型的创建更快、更轻松。它有一个拖放式的界面,让你能轻松地上传图像、训练并管理模型,然后将训练好的模型直接部署在Google Cloud上。之前,Google展示过Cloud AutoML Vision模型在ImageNet、CIFAR等热门数据集上的分类成绩,错误率比通用的ML API更低。
 
以下是关于Cloud AutoML Vision的更多信息:
 
更高的准确率:Cloud AutoML Vision基于Google的图像识别方法,包括迁移学习、神经架构搜索技术等,这意味着即使你的企业没有足够的机器学习专业技能,也能获得更准确的模型。
 
更快:用Cloud AutoML创建一个简单的机器学习模型来对AI应用做尝试,只需要几分钟,构建一个完整的商用模型,也只需要一天。
 
易用:AutoML Vision有一个简单的图形化用户界面,你可以制定数据,并将其转换为专为你的需求定制的高质量模型。
 
服装品牌Urban Outfitters的数据科学家Alan Rosenwinkel说:”我们一直在寻找优化客户购物体验的新方法。要向客户提供相关产品推荐、准确的搜索结果和有用的产品筛选器,创建、维护一组全面的产品属性非常重要。但是,手动创建产品属性非常费时费力。为了解决这个问题,我们的团队尝试了用Cloud AutoML通过识别花纹、领口样式等细微产品特征,来将产品归类流程自动化。在帮助我们的客户更好地发现、推荐和搜索产品这件事上,Cloud AutoML前景非常光明。“
 
迪士尼消费产品和互动媒体CTO及高级副总裁Mike White说:“Cloud AutoML的技术能帮我们创建计算机视觉模型,根据迪士尼的角色、产品类别和颜色来标注我们的产品,这些标注可以整合到我们的搜索引擎中,在shopDisney商店中通过更相关的搜索结果、更快的发现速度和产品推荐,来加强用户体验。”
 
伦敦动物学会(ZSL)保护技术主管Sophie Maxwell告诉我们:“ZSL是一个国际慈善组织,在全球范围内为保护动物及其栖息地而努力。要履行这一使命,一个关键要求是要追踪野生动物种群来进一步了解他们的分布,更好地理解人类对这些物种的影响。为了达到这一目标,ZSL在野外设置了一系列相机陷阱,当有热量或运动出现时,为经过的动物拍照。然后,这些设备拍下的数据需要人工分析,根据相关的物种进行标注,比如这个是大象、那个是狮子、那个是长颈鹿,这是一个耗资巨大劳动力密集型任务。ZSL的保护技术部门在与Google的Cloud ML团队密切合作,帮助推进这项激动人心的技术,ZSL想用这项技术来自动分类图像,这样可以削减成本、扩大部署范围,帮我们深入了解该如何更有效地保护世界上的野生动物。”
 
如果有兴趣试用AutoML Vision,可以在这里填表申请:
https://services.google.com/fb/forms/cloudautomlalphaprogram/
 
AutoML Vision是我们和Google Brain以及其他Google AI团队密切合作的成果,也是Cloud AutoML系列产品中的第一个。在降低AI门槛的道路上,我们只是刚刚开始,人工智能帮Cloud AI产品的10000多名客户所实现的能力大大激励了我们,我们希望Cloud AutoML的发布,能帮更多企业通过AI发现更多可能。”

责任编辑:黄焱林

为您推荐