为5G准备的传输网络:光纤是5G的未来

2017-05-25 09:48:50来源:OFweek 光通讯网 热度:
据悉,今年的MWC和OFC大会的一致主题即:为即将到来的5G准备好传输网络。目前的行业共识是2020年开始展开5G广泛部署。但是由于5G NR仍处于标准化的早期阶段,因此5G的准备工作也是一个棘手的问题。
 
随着5G无线标准的不断变化,目前网络运营商能采取哪些措施为5G传输网络奠定基础呢?好消息是,至少5G在物理层的道路是明确的:光纤将是5G网络的基础,集中式RAN(C-RAN)将成为5G网络架构。
 
 
C-RAN是通过4G(商业部署现在正在扩大)引入的,并为移动网络增加了一个新的传输网段:去程。使用C-RAN之后,无线电单元保留在基站塔内,但是基带处理单元(BBUs)却从单元塔移动到中央办公室,以便实现彼此之间以及和其他元件的通信。使用标准CPRI协议,基站塔和BBUs之间的距离可达20公里。
 
C-RAN有两个要点:1)C-RAN是5G所需的传输网络架构,因为BBUs(Cloud RAN)的虚拟化将成为实现5G的关键组件。为了扩展和实现虚拟化,需要立即实施C-RAN架构;2)由于容量和距离要求相结合,去程网络将主要以光纤为基础。
 
物理层的测试要求也非常简单,重点是对任何光纤网络至关重要的光纤特性的测试。也就是说,在准备5G数据速率和架构时,有一些差异。
 
衰减
 
衰减是光信号在光纤中传播时的功率降低。衰减的常见原因包括连接器质量差、致密光纤弯曲、故障光纤接头以及由于传输距离增加而导致的光纤本身的缺陷等。与分布式RAN相比,C-RAN引入了两个可能增加损耗的重要因素:1)更大的光纤传输距离-远程头端和BBUs之间的物理隔离距离从分布式RAN的数十米增加到10公里到20公里;2)传输路线中更多数量的连接器。
 
光时域反射计(OTDR)是用于精确测量衰减的正确测试工具,应在任何新的C-RAN光纤安装上进行。如果OTDR点连接器具有异常高的损耗,检查探头有助于确定光纤端面是否应该进行清洁。
 
色度色散
 
色散是光脉冲的扩展,并可能导致光传输中比特差错率的增加。目前两个最重要的形式是色度色散(CD)和偏振模色散(PMD)。CD是由以不同速度运行的光脉冲中的不同波长(颜色)引起,PMD是由不同偏振状态的传播速度差异引起的。
 
在sub-10G速率下,CD和PMD容差率非常高;但在10G及以上时,色散就成为一个问题。这是一个重要的考虑因素,因为移动回程网络能达到10Gbps的数据速率(最终会更高)。
 
此外,距离也是一个因素。测试和测量供应商EXFO建议对距离超过15公里至20公里的任何跨度进行色散测试;在调试前进行这些测试,以避免CD/PMD相关故障。
 
在远程网络以及在城域网中的相干100G传输的迁移,由于数字信号处理的功能,减少了许多关于色散减损的问题。
 
但是,相干检测带来了一些10G直接检测系统中不存在的限制,例如对偏振态(SOP)和PMD的快速变化的敏感性等。由于SOP和PMD可以在几微秒内变化,相干接收机必须实时补偿PMD和SOP;但是如果它们变化太快,有时则不能实现,就会导致信号丢失。
 
防止相干接收机中的SOP和PMD补偿故障的最佳方法是避免使用具备较高PMD的光纤,因为在较高PMD光纤中,SOP和PMD的快速变化更频繁。
 
总而言之,对于规划5G未来的运营商而言,现在可以在物理层采取措施,将光纤扩展到其小区站点,以期待集中式RAN架构在较高层的需求。从物理层测试的角度来看,该方法很简单,即将重点放在光纤特性上。

责任编辑:吴一波

为您推荐

2.5G移动网络的流媒体技术发展分析

一、现状分析在手机增值业务市场,短信、彩信、彩e等虽然有了交互、24小时不间断等不同于传统媒体的特点,但传输的主要是静态为主的图像和文字内容,影响了其媒体作用的充分发挥。随着最终用户需求的提升,如何更好地融合声音、文字、图像,支持多媒体功能,既发挥短信方便、快捷的优点,又可以弥补短信形式单调的不足,真正使移动用户”振聋发聩",进入一个有声有色、逼真形象的美丽世界成为移动运营商普遍关心的话题。流媒体(StreamingMedia)的出现改变了这种状况。它不需要下载整个文件就可以在向播放器传输的过程中一边下载一边播放,实现了在网上点播或观看电影、电视的梦想。现在,以”流”的形式进行数字媒体的传送,

凯钰光纤通讯IC迅速朝4.25Gbps大跃进

云端运算所引领的商机无限,各种平台应用大量出炉,因而对高频宽的需求迫切;符合高频宽需求的被动光网路(PON)解决方案因此备受重视,进而带动整体光纤宽频市场的蓬勃发展,包括:光纤到户(Fiber-To-The-Home,FTTH)、光纤到街边(Fiber-To-the-Curb,FTTC),光纤到楼(Fiber-To-The-Building、FTTB)等。凯钰科技多年来致力于开发高频宽光纤通讯类比IC,发挥其最擅长之光纤通讯混合讯号技术,持续开发出光通讯收发模组应用所须之限幅放大器、雷射二极体驱动器与整合型GPONIC等。由于光纤通讯市场之技术进入门槛甚高,凯钰科技算是全球少数几家能够开发光通

eSilicon 与 MIPS 宣布28 纳米下1.5GHz处理器集群

尊敬的媒体朋友:最大的独立半导体价值链制造者(valuechainproducer,VCP)eSilicon公司,以及业界标准处理器架构与内核的领导厂商MIPS科技公司共同宣布,已采用GLOBALFOUNDRIES的先进低功率28纳米SLP制程技术,在GLOBALFOUNDRIES位于德勒斯登(Dresden)的Fab1进行高性能、三路微处理器集群的流片,预计明年初正式出货。SoC设计已可立即开始。MIPS科技提供以其先进MIPS32®1074Kf™同步处理系统(C

1.3Gbps!博通发布全球首款5G Wi-Fi SoC控制器

博通今天宣布推出全球第一款基于IEEE802.11ac标准的5GWi-FiSoC芯片,型号为“BCM43460”,最高数据传输率达1.3Gbps,可满足企业、无线云网络、电信运营商的Gbps级别访问需求。博通宣称,该芯片可让无线设备的传输速度达到目前流行标准802.11n的三倍,能效更是能够超过六倍。BCM43460单芯片完全整合MAC、PHY、Radio等所有模块,支持802.11a